Connectivity of Leopard Frog Populations

Principle Investigator: Jef Jaeger Research Assistant Professor, School of Life Sciences, UNLV

Primary Assistance: Charles Drost (USGS) and David Bradford (EPA), Viktoria Hemmings (UNLV), Amy Savage (Cornell), Joshua Greenwood (UNLV), John Wehausen (WMRS)

> Clark County MSHCP Project Progress Report Symposium, 12 August 2009

Conservation Agreement and Strategy (CAS)

Advantional C/AS adjagative: Zone Establish additional Repropositions for a sublict appropriate from soft. Where Relict Leopard Frogs may have once existed...

...and that contains sufficient potential habitat for conservation actions

²⁰⁰⁵⁻UNLV-575, year 2 of 3 progress report, page 3

Colorado River from mouth of Spencer Canyon

Photo: Jef Jaeger, Oct 2009

Project Goals

Assess the distribution of leopard frogs within the Grand Canyon portion of the PMZ, and determine the taxonomic identity of the populations within

Identify genetic structure among leopard frog populations throughout the PMZ

Include samples from:

- •Relict Leopard Frog populations
- •Regional populations of Lowland Leopard Frogs
- •Any new leopard frog populations encountered

Field Surveys

- •Identified priority areas within the Western Grand Canyon
- •Conduct visual encounter surveys methods specified in field protocol and data management documents
- •Survey trips along the river hiking up canyon, or from the rim hiking down canyon
- •Mostly multiple day journeys by raft and/or backpacking
- •Logistics of survey trips often required targeting only portions of a site/canyon, thus requiring multiple site visits

Areas where we may still conduct additional surveys this coming fall:

- Upper areas of Peach Springs Wash
- Upper Tributaries of Spencer Canyon, including areas of Milkweed and West Water Canyons

These areas are considered sensitive by the Hualapai Tribe...

Columbine Fall and Cave Canyon

MtDNA Analysis

"Completed"

Manuscript submitted for review (July 2009):

"Phylogeography of declining relict and lowland leopard frogs in the desert Southwest of North America"

Viktória Oláh-Hemmings, Jef Jaeger, Michael Sredl, Martin Schlaepfer, Randy Jennings, Charles Drost, David Bradford, and Brett Riddle.

MtDNA Analysis

 Assessed sequences data from 1035 bp of ND2 and confirmed phylogenetic patterns with 962 bp of Cyt b

- Range-wide sampling of extant populations of *R. onca* and *R. yavapaiensis*
 - 51 samples of *R. onca* from 6 sites
 - 23 samples from the population in Surprise Canyon
 - 202 samples of *R. yavapaiensis* from 23 sites in Arizona and Mexico
 - 37 outgroup samples

MtDNA Analysis

Sample sites and relative sample sizes (circle size)

Bayesian consensus tree from ND2 and Cyt b haplotype data

Preliminary ND2 Neighbor-Joining haplotype tree, clock enforced

2005-UNLV-575, year 2 of 3 progress report, page 17

Phylogeography based on MtDNA analysis

Complex history of range expansion, contraction, and isolation

MtDNA Analysis – ND2 Haplotype Assessment

Climatic Niche Models

Base on temperature and precipitation variables

Two different climatic reconstructions of the Latest Glacial Maximum

Oláh-Hemmings et al. (in review)

Microsatellite Analysis

Quickly evolving, tandem repeating regions of nuclear DNA

Development Microsatellite Markers/Primers

Savage A.E., and J.R. Jaeger (2009)

Isolation and characterization of microsatellite markers in the lowland leopard frog (*Rana yavapaiensis*) and the relict leopard frog (*R. onca*), two declining frogs of the North American desert southwest.

Molecular Ecology Resources 9, 199–202

Microsatellite Markers/Primers

Locus	Repeat motif	Primer sequence (5'-3')	Size range
RoC4	$(ATAG)_{19}(ATAC)_{12}$	F: (6-FAM)TTACCAAGGTAGCACTCTTTG	195-243
		R: ACTGCAAACCGGAAATGT	
<i>Ro</i> C123	(TGTA) ₁₀	F: (PET)GGCTTACTTCTTGCCTTTAGC	124-156
		R: CATCCATTTTTCCCTTGTTC	
<i>Ro</i> D102	(TATC) ₁₉	F: (NED)ATGGAGATTTAAGTGCAAGAGT	195-251
		R: CTTCCCAATATGGCATAGATAT	
<i>Ro</i> D125	(AGAT) ₁₅	F: (6-FAM)TCAATGGTGGTGTGTCAC	282-298
		R: GCTCTGAAGTCAACTGGTC	
RoC9	$(AT)_5(AGAT)_{10}(ACAT)_8$	F: (NED)CCAGCTCTAAACACATTAGCTC	184-239
		R: CAGCATAGGTTGGAATACAAAT	
<i>Ro</i> D124	$(TCTA)_{19}(TCTCTA)_6(TC)_3$	F: (VIC)ACCCCTCCAAGTCAAAATC	232-292
		R: AAAGGTGGGCAAACTCAA	
<i>Ro</i> D120	(ATCT) ₁₁	F: (NED)TATCCGAGGCTTAAAATCCTTC	100-124
		R: ATATCGGTGCAACCCTAATACA	
<i>Ro</i> D122	$(TATC)_{19}(TA)_1(TATC)_2$	F: (NED)CTCTGAGTCTGTCTGTCTGTCTGTCT	190-260
		R: TAGTGGCTTAGTCCATTCTATG	
<i>Ro</i> C110	$(ATAC)_7(AC)_6$	F: (VIC)GGACCTGTCATACACAATGTC	124-148
		R: AAATGCTCTCAAACCAAGTAAC	
RyDI-7	(GT) ₁₄	F: (VIC)AATACTCTGTTCATCTTTGTCATCTGTTCTG	232-280
		R: AAATCCTTAGCACTCCTTCTGGTCACT	
RyTET-G	(ATCT) ₁₃	F: PET)GGTGGTGTACAGAGCCAAAAGGATTAGAATTGTGTTGAT	124-224
		R: AACCCCTAGACGCGCACGAGGTGAAGAAG	
RyTET-f	(CTAT) ₁₆	F: (6-FAM)CTTTACCCTTAAGTTGTTTAGTGGATAA	219-289
		R: ACTTACAAACACAATAATATAACAGGACCGAGTA	
<i>Ry</i> TET-e	(CAAA) ₆	F: (PET)ATAGTTCAGCAATTTTGTATATTTTTGTGCAAGATGTATG	219-271
		R: ACTTCTCCGAGGGGGGTCAGCAGATGT	
<i>Ry</i> DI-2r	$(AC)_{11}$	F: (NED)TTCAACGTCCCATTAAGAGGAAACT	182-194
		R: GACTATTTGGGCGATATCAGAAAA	
Ry2	$(CA)_6CC(AC)_4ACC(AC)_6$	F: (PET)GTGTGCGGCAGAGCCATGTGC	166-186
Savage & Jae	ger (2009)	R: GGCATATCCATTTTGATGGG	

Screen-photo of a portion of a gel run of R. onca microsatellites

2005-UNLV-575, year 2 of 3 progress report, page 24

S 1	ile Edit	Gel Project	Sample	Settings V	View Wind	ows Help		1.1.1.1.1.1						
							15+3445				Wed 9:	48 AM	Genescan	83.1.2
<u>+ 4</u>	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	2200	-		日日
3600_								and the second second	and all a		2200	3400	3600	3990
3200_			and the second											
2900_														
2400_														
2000_														
1600_				1										
1200_									1	1				
800_									1	1 and				
400_)				Л				. 11.	16	all	AN	1 Ac	A	A
0_1	- A.	A AL	1. A	11	A A	ΛΛ	1 Am	ALIA	N AS	mia				(D)
B	G Y MX	Y												

Screen-photo of 4 *R. onca* microsatellite markers for a signal individual as seen on analysis software

Project Status

- ✓ All milestones and deliverables have been met to date...
- Field surveys completed, all primary targeted sites within western Grand Canyon region have been surveyed
 - No new populations found
 - Final report and data transfer pending
- Phylogeographic analysis based on mtDNA "completed"
 - Manuscript submitted to scientific journal for peer-review
 - Final report pending
- Available microsatellite markers/primers assessed and polymorphic loci identified
 - Information provided in a peer-reviewed publication
- ✓ Microsatellite data currently being generated
 - Analysis and final report, pending

Acknowledgements

- Funding: Clark County, Support also from UNLV, NSF, and USGS
- Additional assistance from: Lisa Gelczis, Randy Jennings, Brett Riddle, Jim Rorabaugh, Mike Sredl, Martin Schlaepfer, and Kelly Zamudio
- Special thanks to the field crews and volunteers that helped conduct surveys...